Prepared for: **WCA of North Carolina 421 Raleigh View Road** Raleigh, NC 27610 JEI Project Number 710, Task 05 92-31 SECOND SEMIANNUAL GROUNDWATER MONITORING **REPORT OF 2005** MATERIAL RECOVERY, LLC CONSTRUCTION AND DEMOLITION LANDFILL WAKE COUNTY, NORTH CAROLINA May 2006 Prepared by: ENGINEERING, INC. 2301 West Meadowview Road, Suite 203 Greensboro, North Carolina 27407 (336) 323-0092

May 12, 2006

Waste Industry Experts

Henderson Building Suite 203 2301 W Meadowview Rd Greensboro, NC 27407

tel: 336/323-0092 fax: 336/323-0093

www.JoyceEngineering.com

Mr. Ethan Brown Division of Waste Management/Solid Waste Section 1647 Mail Service Center Raleigh, NC 27699-1646

RE: Second Semiannual Groundwater Monitoring Report of 2005

Material Recovery, LLC, C&D Landfill

Permit No. 92-31

JEI Project No. 710, Task 05

Dear Ethan:

A summary of the detected constituents for the site is included as Table 1. No organic constituents were detected above their respective laboratory reporting limits during the December 2005 event. Three inorganic constituents were detected above the laboratory reporting limits during the December 2005 event. Barium was detected in MW-2 and MW-3, at concentrations consistent with previous results. Chromium was detected in MW-5 for the fist time but was much lower than NC 2L Drinking Water and EPA MCL Standards. Lead was also detected in MW-5 at a concentration consistent with previous results. Barium in MW-3 and lead in MW-5 were detected at concentrations above their respective NC 2L Drinking Water and EPA MCL Standards. Previous data suggest that turbidity may be a factor in the relatively high concentrations of total metals.

A summary of groundwater elevations is included as Table 2. The field information forms, a site plan map, and a compact disc containing the laboratory report for this event are also enclosed in this report. The next semiannual monitoring event is scheduled to take place in June 2006. If you have any questions, please feel free to contact me at (336) 323-0092.

Sincerely,

JOYCE ENGINEERING, INC.

Jeremey J. Kerly Staff Hydrogeologist

Enclosure

Cc: Vernon Smith – WCA of North Carolina, L.P.

Wilbert Carter - Material Recovery, LLC, C&D Landfill

File

WCA of North Carolina, L.P. Material Recovery, LLC, C&D Landfill Second Semiannual Groundwater Monitoring Report of 2005

May 2006

Prepared by:

2301 West Meadowview Road, Suite 203 Greensboro, North Carolina 27407

Prepared by:

Jeremey J. Kerly

Supervised & Reviewed by:

G. Van Ness Burbach, Ph.D., P.G.

NC License # 1349

Tables

TABLE 1 SUMMARY OF DETECTED CONSTITUENTS MATERIAL RECOVERY, LLC, C AND D LANDFILL

[NC 2L Standard], [EPA MCL] in μg/L arsenic [10] [10]	May-02	RL	MW-1	MW-2	MW-3	MW-4	ΓRATION (μ MW-5		CHYLA		7
arsenic [10]					147 44 -2	IVI VV -4	IVI VV -3	SW-1	SW-2	SW-3	Blanks
		10			-				ND		ND
[10]	Aug-02	10	ND	ND	ND	ND	ND			ND	ND
	Jun-03	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-03	10	ND	ND	ND	ND .	ND	ND	ND	ND	ND
	Jun-04	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-04	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Jun-05	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-05	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
barium (total)	May-02	500							ND		ND
[2000]	Aug-02	500	ND	ND	4000	ND	ND			ND	ND
[2000]	Jun-03	500	ND	ND	3100	ND.	ND	ND	ND	ND	ND
	Dec-03	500	160	420	1200	120	120	ND	ND	230	ND
	Jun-04	500	ND	540	1500	ND	ND	ND	ND	ND	ND
	Dec-04	500	ND	570	3100	ND	ND	ND	ND	ND	ND
	Jun-05	500	ND	520	2600	ND	ND	ND	ND	ND	ND
	Jun-05	500			2700		_				
	Dec-05	500	ND	640	5700	ND	ND	ND	ND	ND	ND
barium (dissolved)	Dec-03	500			1000	-					
	Jun-04	500			1400						
	Dec-05	500			5900						
cadmium	May-02	1			000000000000000000000000000000000000000				ND		ND
[1.75]	Aug-02	1	1.4	1.1	1.8	1.2	1.0			1.6	ND
[5]	Jun-03	1	1.2	1.1	1.7	1.8	∞3.4	1.0	ND	1.1	ND
	Dec-03	1	ND	1.3	ND	ND	ND	ND	ND	ND	ND
	Jun-04	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-04	1	ND	ND	ND	ND	1.1	ND	ND	ND	ND
	Jun-05	1	ND	ND	ND	ND.	ND	ND	ND	ND	ND
	Dec-05	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
chromium	May-02	10							ND		ND
[50]	Aug-02	10	ND	ND	ND	ND	ND			ND	ND
[100]	Jun-03	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-03	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Jun-04	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-04	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Jun-05	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
lead (total)	Dec-05 May-02	10	ND	ND	ND	ND	15	ND	ND_	ND	ND
[15]	1 ,	10	\	 NTD					ND		ND
	Aug-02	10	ND	ND	ND	ND	19	***		ND	ND
[15*]	Jun-03	10	ND	ND	ND	ND	21	ND	ND	ND	ND
ı	Dec-03	10	ND	ND	ND	ND	₹ 34	ND	ND	ND	ND
ļ	Jun-04	10	ND	ND	ND	ND	15	ND	ND	ND	ND
	Dec-04	10	ND	ND	ND	ND		ND	ND	ND	ND
	Jun-05	10	ND	ND	ND	ND	92	ND	ND	ND	ND
ļ	Jun-05	10					ND				
lood (discolved)	Dec-05	10	ND	ND	ND	ND	81	ND	ND	ND	ND
lead (dissolved)	Dec-03	10					ND				
	Jun-04	10					ND				
maraus	Dec-05	10					ND				
mercury	May-02					3.775		-			
[1.1]	Aug-02	0.5	ND	ND	ND	ND	ND			ND	ND
[2]	Jun-03	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
•	Dec-03	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Jun-04	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1100	0.5	ND	ND	ND	ND	NII Y	ND	ND	NID	ND
	Dec-04 Jun-05	0.5	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND

TABLE 1 SUMMARY OF DETECTED CONSTITUENTS MATERIAL RECOVERY, LLC, C AND D LANDFILL

Parameter					1	CONCENT	TRATION	(μg/L)			
[NC 2L Standard], [EPA MCL] in µg/L	Date	RL	MW-1	MW-2	MW-3	MW-4	MW-5	SW-1	SW-2	SW-3	Blanks
selenium	May-02	20							ND		ND
[50]	Aug-02	20	ND	ND	ND	ND	ND			ND	ND
[50]	Jun-03	20	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-03	20	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Jun-04	20	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-04	20	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Jun-05	20	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-05	20	ND	ND	ND	ND -	ND	ND	ND	ND	ND
silver	May-02	10							ND		ND
[18]	Aug-02	10	ND	ND	ND	ND	ND			ND	ND
[100]	Jun-03	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-03	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Jun-04	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-04	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Jun-05	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-05	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes	May-02	10							ND		ND
[530]	Jun-03	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
[10000]	Dec-03	10	5	ND	ND	ND	ND	ND	ND	ND	ND
•	Jun-04	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-04	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Jun-05	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Dec-05	5	ND	ND	ND .	ND	ND	ND	ND	ND	ND

Notes:

- 1. RL = Reporting Limit
- 2. ND = Not detected at or above the reporting limit (=NCPQL)
- 3. = not available
- 4. 2L Standard = North Carolina's groundwater quality standard established under 15A NCAC 2L, .0202.
- 5. Shaded values are greater than the 2L Standards.
- 6. Bolded values are greater than the EPA MCLs.
- 7. MW = monitoring well
- 8. SW = surface water
- 9. Blank data represent field blank, trip blank and laboratory blank values.
- 10. * = EPA Action Level
- 11. All concentrations are in micrograms per liter ($\mu g/L$).

MATERIAL RECOVERY, LLC, C AND D LANDFILL GROUNDWATER ELEVATION SUMMARY TABLE TABLE 2

		Monitoring	Monitoring Well Water Level Elevations	el Elevations	
Well No.	MW-1	MW-2	MW-3	4-WM	S-WM
Well TOC Elev. (ft)	280.95	213.37	218.54	201.52	203.38
Aug-02	252.98	195.37	191.13	186.43	191.82
Jun-03	258.29	197.10	195.09	191.72	193.45
Dec-03	258.17	197.55	195.62	191.88	194.13
Jun-04	257.17	196.89	194.54	191.12	193.43
Dec-04	256.71	196.85	193.93	190.70	193.38
Jun-05	256.73	196.40	193.41	190.13	193.01
Dec-05	254.10	196.16	191.64	189.84	193.38

Notes:

- 1. All elevations are referenced to mean sea level.
 - 2. TOC = top of casing
 - 3. Elev. = elevation4. ft = feet

Joyce Engineering 2301 West Meadowview Road S-203 Greensboro, NC 27407 Report #: CRY19355 Submitted: 12/27/2005 Reported: 1/6/2006 Reference: 710.01 Page 2 of 11

SAMPLE IDENTIFICATION

Lab	Sample	ID	Client	ID	Collection	Date

CRY19355-1	MW-1	12/27/2005	09:59
CRY19355-2	MW-2	12/27/2005	12:45
CRY19355-3	MW-3	12/27/2005	12:45
CRY19355-4	MW-4 (MS/MSD)	12/27/2005	13:15
CRY19355-5	MW-5	12/27/2005	13:05
CRY19355-6	SW-1	12/27/2005	11:55
CRY19355-7	SW-2	12/27/2005	13:05
CRY19355-8	SW-3	12/27/2005	10:00
CRY19355-9	FIELD BLANK	12/27/2005	13:45
CRY19355-10	TRIP BLANK		

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. This data has been produced in accordance with NELAC Standards (July, 2002).

This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

Chuck Smith

Joyce Engineering 2301 West Meadowview Road S-203 Greensboro, NC 27407 Report #: CRY19355 Submitted: 12/27/2005 Reported: 1/6/2006 Reference: 710.01 Page 2 of 11

SAMPLE IDENTIFICATION

Lab Sample ID	Client ID	Collection	Date
CRY19355-1	MW-1	12/27/2005	09:59
CRY19355-2	MW-2	12/27/2005	12:45
CRY19355-3	MW-3	12/27/2005	12:45
CRY19355-4	MW-4 (MS/MSD)	12/27/2005	13:15
CRY19355-5	MW-5	12/27/2005	13:05
CRY19355-6	SW-1	12/27/2005	11:55
CRY19355-7	SW-2	12/27/2005	13:05
CRY19355-8	SW-3	12/27/2005	10:00
CRY19355-9	FIELD BLANK	12/27/2005	13:45
CRY19355-10	TRIP BLANK		

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. This data has been produced in accordance with NELAC Standards (July, 2002).

This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

Chuck Smith

Report #: CRY19355 Submitted: 12/27/2005 Reported: 1/6/2006 Reference: 710.01

Page 3 of 11

CASE NARRATIVE

<u>Overview</u>

None

Quality Control Samples

None

Other Comments

None

The analytical data presented in this report are consistent with the methods as referenced in the analytical report. Any exceptions or deviations are noted in the QC remarks section of this narrative. Should there be any questions regarding this package.

Released By:

Environmental Conservation Laboratories, Inc. Chuck Smith

Report #: CRY19355 Submitted: 12/27/2005

Reported: 1/6/2006 Reference: 710.01

Page 4 of 11

*	Parameter	RDL	Units	MW-1	MW-2	MW-3	MW-4 (MS/MSD)	MW-5
	Lead	10	ug/L	ND	ND	ND	ND	81
	Lead, filtered	10	ug/L	NR	NR	NR	NR	ND
	Mercury	0.5	ug/L	ND	ND	ND	ND	ND
	Arsenic	10	ug/L	ND	ND	ND	ND	ND
	Barium	500	ug/L	ND	640	5700	ND	ND
	Barium, filtered	500	ug/L	NR	NR	5900	NR	NR
	Selenium	20	ug/L	ND	ND	ND	ND	ND
	Silver	10	ug/L	ND	ND	ND	ND	ND
	Cadmium	1	ug/L	ND	ND	ND	ND	ND
	Chromium	10	ug/L	ND	ND	ND	ND	15

Report #: CRY19355 Submitted: 12/27/2005 Reported: 1/6/2006

Reference: 710.01 Page 5 of 11

Parameter	RDL	Units	MW-1	MW-2	MW-3	MW-4 (MS/MSD)	MW - 5
Ethylbenzene	5.	ug/L	ND	ND	ND	ND	ND
2-Hexanone	50.	ug/L	ND	ND	ND	ND	ND
Bromomethane	10.	ug/L	ND	ND	ND	ND	ND
Chloromethane	10.	ug/L	ND	ND	ND	ND	ND
Dibromomethane	10.	ug/L	ND	ND	ND	ND	ND .
Methylene Chloride	10.	ug/L	ND	ND	ND	ND	ND
2-Butanone	100	ug/L	ND	ND	ND	ND	ND
Iodomethane	10.	ug/L	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	100	ug/L	ND	ND	ND	ND	ND
Benzene	5.	ug/L	ND	ND	ND	ND	ND
Styrene	10.	ug/L	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	5.	ug/L	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5.	ug/L	ND	ND	ND	ND	ND
Tetrachloroethene	5.	ug/L	ND	ND	ND	ND	ND
Toluene	5.	ug/L	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5.	ug/L	ND	ND	ND	ND	ND
Trichloroethene	5.	ug/L	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5.	ug/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	5.	ug/L	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	15.	ug/L	ND	ND	ND	ND	ND
Vinyl Acetate	50.	ug/L	ND	ND	ND	ND	ND
Vinyl chloride	10.	ug/L	ND	ND	ND	ND	ND
m-Xylene & p-Xylene	5.	ug/L	ND	ND	ND	ND	ND
o-Xylene	5.	ug/L	ND	ND	ND	ND	ND
Bromochloromethane	5.	ug/L	ND	ND	ND	ND	ND
Bromodichloromethane	5.	ug/L	ND	ND	ND	ND	ND
Acetone	100	ug/L	ND	ND	ND	ND	ND
Bromoform	5.	ug/L	ND	ND	ND	ND	ND
Carbon Disulfide	100	ug/L	ND	ND	ND	ND	ND
Carbon Tetrachloride	10.	ug/L	ND	ND	ND	ND	ND
Chlorobenzene	5.	ug/L	ND	ND	ND	ND	ND
Chloroethane	10.	ug/L	ND	ND	ND	ND	ND
Chloroform	5.	ug/L	ND	ND	ND	ND	ND
Dibromochloromethane	5.	ug/L	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane		ug/L	ND	ND	ND	ND	ND
1,2-Dibromoethane	5.	ug/L	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	5.	ug/L	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5.	ug/L	ND	ND	ND	ND	ND
t-1,4-Dichloro-2-Butene	100	ug/L	ND	ND	ND	ND	ND
1,1-Dichloroethane	5.	ug/L	ND	ND	ND	ND	ND
1,2-Dichloroethane	5.	ug/L	ND	ND	ND	ND	ND
1,1-Dichloroethene	5.	ug/L	ND	ND	ND	ND	ND
C-1,2-Dichloroethene	5.	ug/L	ND	ND	ND	ND	ND
t-1,2-Dichloroethene	5.	ug/L	ND	ND	ND	ND	ND
Acrylonitrile	200	_	ND	ND	ND	ND	ND
1,2-Dichloropropane	5.	ug/L	ND	ND	ND	ND	ND
c-1,3-Dichloropropene	10.	_	ND	ND	ND	ND	ND
t-1,3-Dichloropropene	10.	ug/L	ND	ND	ND	ND	ND

Report #: CRY19355 Submitted: 12/27/2005

Reported: 1/6/2006

Reference: 710.01
Page 6 of 11

Parameter	RDL	Units	SW-1	SW-2	SW-3	FIELD BLANK	TRIP BLANK
Lead	10	ug/L	ND	ND	ND	ND	NR
Lead, filtered	10	ug/L	NR	NR	NR	NR	NR
Mercury	0.5	ug/L	ND	ND	ND	ND	NR
Arsenic	10	ug/L	ND	ND	ND	ND	NR
Barium	500	ug/L	ND	ND	ND	ND	NR
Barium, filtered	500	ug/L	NR	NR	NR	NR	NR
Selenium	20	ug/L	ND	ND	ND	ND	NR
Silver	10	ug/L	ND	ND	ND	ND	NR
Cadmium	1	ug/L	ND	ND	ND	ND	NR
Chromium	10	ug/L	ND	ND	ND	ND	NR

Report #: CRY19355 Submitted: 12/27/2005 Reported: 1/6/2006 Reference: 710.01 Page 7 of 11

Parameter	RDL	Units	SW-1	SW-2	SW-3	FIELD BLANK	TRIP BLANK
Ethylbenzene	5.	ug/L	ND	ND	ND	ND	ND
2-Hexanone	50.	ug/L	ND	ND	ND	ND	ND
Bromomethane	10.	ug/L	ND	ND	ND	ND	ND
Chloromethane	10.	ug/L	ND	ND	ND	ND	ND
Dibromomethane	10.	ug/L	ND	ND	ND	ND	ND
Methylene Chloride	10.	ug/L	ND	ND	ND	ND	ND
2-Butanone	100	ug/L	ND .	ND	ND	ND	ND
Iodomethane	10.	ug/L	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	100	ug/L	ND	ND	ND	ND	ND
Benzene	5.	ug/L	ND	ND	ND	ND	ND
Styrene	10.	ug/L	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	5.	ug/L	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5.	ug/L	ND	ND	ND	ND	ND
Tetrachloroethene	5.	ug/L	ND	ND	ND	ND	ND
Toluene	5.	ug/L	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5.	ug/L	ND	ND	ND	ND	ND
Trichloroethene	,5.	ug/L	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5.	ug/L	ND	ND	ND	ND	ND
Trichlorofluoromethane	5.	ug/L	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	15.	ug/L	ND	ND	ND	ND	ND
Vinyl Acetate	50.	ug/L	ND	ND	ND	ND	ND
Vinyl chloride	10.	ug/L	ND	ND	ND	ND	ND
m-Xylene & p-Xylene	5.	ug/L	ND	ND	ND	ND	ND
o-Xylene	5.	ug/L	ND	ND	ND	ND	ND
Bromochloromethane	5.	ug/L	ND	ND	ND	ND	ND
Bromodichloromethane	5.	ug/L	ND	ND	ND	ND	ND
Acetone	100	ug/L	ND	ND	ND	ND	ND
Bromoform	5.	ug/L	ND	ND	ND	ND	ND
Carbon Disulfide	100	ug/L	ND	ND	ND	ND	ND
Carbon Tetrachloride	10.	ug/L	ND	ND	ND	ND	ND
Chlorobenzene	5.	ug/L	ND	ND	ND	ND	ND
Chloroethane	10.	ug/L	ND	ND	ND	ND	ND
Chloroform	5.	ug/L	ND	ND	ND	ND	ND
Dibromochloromethane	5.	ug/L	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	25.	ug/L	ND	ND	ND	ND	ND ·
1,2-Dibromoethane	5.	ug/L	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	5.	ug/L	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5.	ug/L	ND	ND	ND	ND	ND
t-1,4-Dichloro-2-Butene	100	ug/L	ND	ND	ND	ND	ND
1,1-Dichloroethane	5.	ug/L	ND	ND	ND	ND	ND
1,2-Dichloroethane	5.	ug/L	ND	ND	ND	ND	ND
1,1-Dichloroethene	5.	ug/L	ND	ND	ND	ND	ND
C-1,2-Dichloroethene	5.	ug/L	ND	ND	ND	ND	ND
t-1,2-Dichloroethene	5.	ug/L	ND	ND	ND	ND	ND
Acrylonitrile	200	ug/L	ND	ND	ND	ND	ND
1,2-Dichloropropane	5.	ug/L	ND	ND	ND	ND	ND
c-1,3-Dichloropropene	10.	ug/L	ND	ND	ND	ND	ND
t-1,3-Dichloropropene	10.	ug/L	ND	ND	ND	ND	ND

Report #: CRY19355

Submitted: 12/27/2005 Reported: 1/6/2006

Reference: 710.01

Page 8 of 11

Parameter	RDL	Units	Method BLK
Lead	10	ug/L	ND
Lead, filtered	10	ug/L	ND
Mercury	0.5	ug/L	ND
Arsenic	10	ug/L	ND
Barium	500	ug/L	ND
Barium, filtered	500	ug/L	ND
Selenium	20	ug/L	ND
Silver	10	ug/L	ND
Cadmium	1	ug/L	ND
Chromium	10	ug/L	ND

Report #: CRY19355 Submitted: 12/27/2005 Reported: 1/6/2006 Reference: 710.01

Page 9 of 11

Parameter	RDL	Units	Method	BLK
Ethylbenzene	5.	ug/L	ND	
2-Hexanone	50.	ug/L	ND	
Bromomethane	10.	ug/L	ND	
Chloromethane	10.	ug/L	ND	
Dibromomethane	10.	ug/L	ND	
Methylene Chloride	10.	ug/L	ND	
2-Butanone	100	ug/L	ND	
Iodomethane	10.	ug/L	ND	
4-Methyl-2-pentanone	100	ug/L	ND	
Benzene	5.	ug/L	ND	
Styrene	10.	ug/L	ND	
1,1,1,2-Tetrachloroethane	5.	ug/L	ND	
1,1,2,2-Tetrachloroethane	5.	ug/L	ND	
Tetrachloroethene	5.	ug/L	ND	
Toluene	5.	ug/L	ND	
1,1,1-Trichloroethane	5.	ug/L	ND	
Trichloroethene	5.	ug/L	ND	
1,1,2-Trichloroethane	5.	ug/L	ND	
Trichlorofluoromethane	5.	ug/L	ND	
1,2,3-Trichloropropane	15.	ug/L	ND	
Vinyl Acetate	50.	ug/L	ND	
Vinyl chloride	10.	ug/L	ND	
m-Xylene & p-Xylene	5.	ug/L	ND	
	5.	ug/L	ND	
o-Xylene Bromochloromethane	5.	_	ND	
Bromodichloromethane	5.	ug/L	ND	
	100	ug/L	ND	
Acetone Bromoform		ug/L	ND	
Carbon Disulfide	5.	ug/L		
	100	ug/L	ND	
Carbon Tetrachloride	10.	ug/L	ND	
Chlorobenzene Chloroethane	5.	ug/L	ND	
	10.	ug/L	ND	
Chloroform Dibromochloromethane	5.	ug/L	ND	
	5.	ug/L	ND	
1,2-Dibromo-3-chloropropane	25.	ug/L	ND	
1,2-Dibromoethane	5.	ug/L	ND	
1,2-Dichlorobenzene	5.	ug/L	ND	
1,4-Dichlorobenzene	5.	ug/L	ND	
t-1,4-Dichloro-2-Butene	100	ug/L	ND	
1,1-Dichloroethane	5.	ug/L	ND	
1,2-Dichloroethane	5.	ug/L	ND	
1,1-Dichloroethene	5.	ug/L	ND	
C-1,2-Dichloroethene	5.	ug/L	ND	
t-1,2-Dichloroethene	5.	ug/L	ND	
Acrylonitrile	200	ug/L	ND	
1,2-Dichloropropane	5.	ug/L	ND	
c-1,3-Dichloropropene	10.	ug/L	ND	
t-1,3-Dichloropropene	10.	ug/L	ND	

Report #: CRY19355

Submitted: 12/27/2005 Reported: 1/6/2006 Reference: 710.01

Page 10 of 11

QUALITY CONTROL

Parameter	% RECOVERY LCS/MS/MSD	LCS LIMITS	MS/MSD LIMITS	RPD MS/MSD	RPD LIMITS
DISSOLVED METALS					
Barium, 6010	113/119/114	72-125	74-119	4	11
Lead, 6010	103/106/102	72-121	68-126	4	19
TOTAL METALS					
Mercury, 7470	97/95/100	81-126	70-136	5	12
Silver, 6010	109/114/110	80-128	69-121	4	12
Arsenic, 6010	110/115/110	82-117	64-126	4	12
Barium, 6010	113/119/114	72-125	74-119	4	11
Cadmium, 6010	112/117/113	72-120	68-121	3	12
Chromium, 6010	108/114/110	78-119	73-120	4	17
Lead, 6010	103/106/102	72-121	68-126	4	19
Selenium, 6010	109/113/109	82-127	65-129	4	10
EPA METHOD APPENDIX 1,8260					
1,1-Dichloroethene	102/99/96	64-139	36-177	3	30
Benzene	96/86/87	69-115	53-150	1	23
Trichloroethene	100/93/91	74-118	64-124	2	25
Toluene	99/95/92	77-117	40-161	3	23
Chlorobenzene	107/96/95	76-118	44-128	1	22

Report #: CRY19355 Submitted: 12/27/2005 Reported: 1/6/2006 Reference: 710.01 Page 11 of 11

SURROGATE RECOVERY

Lab Sample ID	Surrogate	ቄ	RECOVERY	ACCEPT	LIMITS
CRY19355-1	Bromofluorobenzene		83	70-	130
CRY19355-1	D8-Toluene		79	77-	118
CRY19355-1	Dibromofluoromethane		87	73-	138
CRY19355-2	Bromofluorobenzene		83	70-	130
CRY19355-2	D8-Toluene		82	77-	118
CRY19355-2	Dibromofluoromethane		87	73-	138
CRY19355-3	Bromofluorobenzene		82	70-	130
CRY19355-3	D8-Toluene		81	77-	118
CRY19355-3	Dibromofluoromethane		87	73-	138
CRY19355-4	Bromofluorobenzene		82	70-	130
CRY19355-4	D8-Toluene		82	77-	118
CRY19355-4	Dibromofluoromethane		87	73-	138
CRY19355-5	Bromofluorobenzene		87	70-	130
CRY19355-5	D8-Toluene		83	77-	118
CRY19355-5	Dibromofluoromethane		90	73-	138
CRY19355-6	Bromofluorobenzene		86	70-	130
CRY19355-6	D8-Toluene		86	77-	118
CRY19355-6	Dibromofluoromethane		89	73-	138
CRY19355-7	Bromofluorobenzene		84	70-	130
CRY19355-7	D8-Toluene		80	77-	118
CRY19355-7	Dibromofluoromethane		85	73-	138
CRY19355-8	Bromofluorobenzene		85	70-	130
CRY19355-8	D8-Toluene		80	77-	118
CRY19355-8	Dibromofluoromethane		86	73-	138
CRY19355-9	Bromofluorobenzene		85	70-	130
CRY19355-9	D8-Toluene		85	77-	118
CRY19355-9	Dibromofluoromethane		86	73-	138
CRY19355-10	Bromofluorobenzene		86	70-	130
CRY19355-10	D8-Toluene		85		118
CRY19355-10	Dibromofluoromethane		89		138
V052LY1-1	Bromofluorobenzene		81	70-	130
V052LY1-1	D8-Toluene		83	77-	118
V052LY1-1	Dibromofluoromethane		87	73 -	138

ENVIRONMENTAL CONSERVATION LABORATORIES Bar Court Cou

Jacksonville, Florida 32216-6069 Orlando, Florida 32824-8529 Ph. (904) 296-3007 • Fax (904) 296-6210 Ph. (407) 826-5314 • Fax (407) 850-6945 4810 Executive Park Court, Suite 211

10207 General Drive

Ph. (919) 677-1669 • Fax (919) 677-9846 Cary, North Carolina 27513 1015 Passport Way

ENCO CompQAP No.: 960038G/0

	90 K	Service Control		г					II S	ENCO CompOAP No.: 960038G/0	JAF No	.: 960038	CHAIN OF		CUSTODY RECORD	CORD
	THE MOLENTA	The Distriction		PROJECT NO.		P.O. NUMBER										7
## Mat	At Material Recovery, L.C., C&D Lawlfill	4,UC,C80	Lawle	*	710.0			-	MATRIX TYPE	<u> </u>			REQUIRED ANALYSIS		PAGE	j j
PROJECT LOC. (State)	SAMPLER(s) NAME			PH9N5)-323-0092	23-0092		_	\(\frac{\partial}{2}\)		_				/	
) Z		J. Kaily IM. Osborne			FAX (330)-3;	23-0093	_		TUBN	<i>-</i>	_	_		_		REPORT
CLIENT NAME				CLIENT	CLIENT PROJECT MANAGER		<u> </u>	<u>'</u>	(oli, soi	<u></u>	57V.	_		\ \ \	램 3	IVEHY
Joyce Engineering	gineering			Mr. Je	eremy Kerley		_	EV.	aine	<u></u>	ME	40 	100	<i>'</i>	EXPEDITED REPORT) REPORT
CLIENT ADDRI	CLIENT ADDRESS (CITY, STATE, ZIP)	ZIP)					 EB EB	REF	OI7S WIGS	_	I day		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		DELIVERY	(surcharge)
2301 Wes	st Meadowvi	ew Road S-	203 Gr	eerisbo	2301 West Meadowview Road S-203 Greensboro, NC 27407		/L:	M 5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	09 ₂₈	· PH	/ / / ;	\ \	Date Due:	
	SAA	SAMPLE				1	137)Au	350		\downarrow		PRHSFRVATIVE			
STATION	DATE	TIME	GHAB	GRAB COMP	SAMPLE IDENTIFICATION		SPM	710s	ארו	140	NOMB	ER OF CONTAI	NUMBER OF CONTAINERS SUBMITTED		REMARKS	
1	D-77-05	0001	×		MW-1						1 3	0	0	NE AF	AFP 1 VOCS + R	+ RCRA MENTS
5	50-62-41	6560	×		MW-2		X				£ 1	0	0		Ť	
8	12-37-05	SHZI	X		MW-3		X				1 3	1	0	NC App	VOCs +	Rera medis L Barium
4	20-18-41	1315	×		MW-4(MS/MSD)	MSD)	X				9 1	0	0	NCAR	NCApp I VOG + RURAMETALS	eAmetals
ω.	20-12-21	1335	×		WW.5		×					0		NC A	NC Appl VOCS + RCRA Metals & disselved Lead	19 metals Leach
9	12-72-51	152	X		l-MS		×				٤ -	0	0	NC 4	NC Appl VOCS + ACPRA Metal	ed metals
7	2018-81	1305	\times		SW-2		X				1 3	0	0			•
8	14-27-05	0001	X		SW-3		X				1 3	0	0			
6	127-05	1345	X		FIELD BLANK	ANK	X				8 1	0	0		\rightarrow	
10	ľ	1			TRIP BLANK	NE	X				0 3	0	0	NC	NC App 1 VOCS	4A
11															·	
12												-				
13																
4	-															
SAMPLE KIT PREF	ARED	BY: OLOC MCARY	A.R.Y	# 27 	DATE TIME REI	RELINQUISHED BY: ((SIGNATURE)			DATE	TIME	RECEIN	RECEIVED BY: (SIGNATURE)		DATE	TIME
RELINQUISHE	RELINQUISHED BY: (SIGNATURE)	G (DATE 12-27		RECEIVED BY: (SIGNATURE)	ATURE)			DATE	TIME	RELINC	RELINQUISHED BY: (SIGNATURE)	Æ)	DATE	TIME
RECEIVED BY (BIGNATURE)	(BIGNATURE)			DATE	TIME	RELINQUISHED BY: ((SIGNATURE)			DATE	TIME		RECEIVED BY: (SIGNATURE)		DATE	TIME
RECEIVED FO	RECEIVED FOR ZBORATORY BY; (SIGNATURE)	Y/(SIGNATURE)	DATE (7	Jed	DATE TIME 0	CUSTODY INTACT		PINCO LOG NO.	7,	REMARKS * Chain covers I cooler.	corres	l cooler.	J.C			1
□ Jacks(orfville	☐ Oriando	1	11/		JYES LINO	\dashv	<u>作り</u>	2							

Environmental Conservation Laboratories, Inc. Login Sample Disposition Form

					Logi	n Sam	ipie Di	sposi	tion For	m			
	Client Name:	Jay	ce l	Engi	ncerir	\mathcal{A}	Login	#: <u>C</u> K	V 1935	5			
	Proj. Name:	WC)	4 Ma	tera	<u>l</u>	-	Date F	Rec'd:	12-27-6	<u>ろ</u> Logged E	By: <u>QH</u>		
	Samples receiv	ed via:	7000	9									
	•		Clie	nt Drop-c	off)	Lab F	Pickup		Courier	LIST AND	ATTACH BILLS		
		ainer De ndicate p			Preservat of each	ion		Total	Number of (Temperat	ures	-
	Containers	None	HCI	HNO₃	H₂SO₄	NaOH	Other		Cooler Nu		Re	eceipt Tem	perature
	1 L Glass	V									(2-6)	On Ice	No Ice
	1 L Plastic		<u> </u>								2-6°	On Ice	No Ice
	500 ml Plastic			1					·		2-6°	On Ice	No Ice
	250 ml Plastic			8							2-6°	On Ice	No Ice
	250 ml Glass	<i>i</i>									2-6°	On Ice	No Ice
	4 oz Jars	~									2-6°	On Ice	No Ice
	40 ml Vial		33								2-6°	On Ice	No Ice
	Other	<i>\</i>							Provide deta	ails of "No lo	e" in Notifi	cation/Con	nments.
	5. Were sa 6. If receiv 7. Were vo 8. Were ac 9. Were ac 10.Were al	red under platile cor queous v queous s	custod ntainers olatile s amples	ly seal, was preserved amples he checked	ere all sea ed (check neadspace for residu	als intact? labels onl -free? al chlorin	ly)? (Ye e? (Ye		No No No No No		N/A N/A N/A N/A N/A		
			Any	discrep	ancies mi	ust be no	ted below	and ap	proved by	lab manage	ement.		
Cli	ent Notification							•	·				
	 Does cl Who no Who wa When? Client re 	tified clie as notified	nt? !?		i) be taken	1:	Ye by		No	Fax		Mail	
		c	ancel a ancel a	ffected a Il analyse	nalyses or	nly (identif	ion in final fy in comm	report. nents bel	ow).				
Со	mments												
	· · · · · · · · · · · · · · · · · · ·												
Pr	ject Status						11.1	7 /	X/-	/	1		
	Si	amples re amples re	eceived ejected	into lab.		4	/ "	th		12/28	5_		
						'		WOAFD DI		/ ۲۸۱۰			

DATE: 12-27-05

Project Name: M	aterial Re	covery, LLC	Pr	oject No./Task	No.:	5			
Well ID:mw-	<u> </u>	Sampler	(s): <u>J. h</u>	Kerly /m. O	shome				
Well Location:	In left	side of	Brownfi	eld Rd between	the 2 gate	<u>e</u>			
We	ll Diame	ter:			2inches				
Init	ial Depth	to Water (D	TW):	<u> 26.</u>	gy_feet				
Dep	oth to Bo	ttom (DTB):		<u>52</u>	.75 feet				
Wa	ter Colur	nn Thicknes	s (WCT)	: <u>25.</u>	90_feet [D]	ΓB-DTW]			
Calculation for O	ne Well	Volume (W	V):						
For	2" Well	: WCT	X 0.16	3 = 4,7	22_gallons				
For	4" Well	: WCT	X 0.65	3 =	gallons				
For THREE Well Volumes: WV X 3 = $\frac{12.66}{12.66}$ gallons									
Actual Am	ount Pu	rged/Bailed	:	12.6	6 gallons				
Purged with: Disposable Bailer									
Sampled w	vith:	i i	4						
Depth to Water before Sampling: 26.50 feet									
Gallons	Time	Temp(°C)	pН	Cond. (µS)	Turb.(ntu)	Initials			
		f	pH 5.91		2.59	Initials MO			
	Time	Temp(°C)	рН 5.91 5.32	Cond. (μS) 107.9 83.9	2.59 697				
Gallons	Time 9:00 9:10 9:20	Temp(°C) 16.6 16.8	pH 5.91 5.32 5.13	Cond. (μS) 107.9 83.9 96.9	2.59 697 751	MO MO			
Gallons O 4.22	Time 9:00 9:10	Temp(°C) 16.6 16.8	рН 5.91 5.32	Cond. (μS) 107.9 83.9	2.59 697	MO MO			
Gallons O 4.22 8.44	Time 9:00 9:10 9:20	Temp(°C) 16.6 16.8	pH 5.91 5.32 5.13	Cond. (μS) 107.9 83.9 96.9	2.59 697 751	MO MO			
Gallons O 4.22 8.44 12.66	Time 9:00 9:10 9:20 9:27	Temp(°C) 16.6 16.8 17.1 16.9	pH 5.91 5.32 5.13 5.06	Cond. (µS) 107.9 83.9 96.9 91.2	2.59 697 751 638	MO MO MO			
Gallons O 4.22 8.44 12.66 Before Sampling	Time 9:00 9:10 9:20 9:27	Temp(°C) 16.6 16.8 17.1 16.9	pH 5.91 5.32 5.13 5.06	Cond. (µS) 107.9 83.9 96.9 91.2	2.59 697 751	MO MO			
Gallons O 4.22 8.44 12.66 Before Sampling Comments (weath	Time 9:00 9:10 9:20 9:27	Temp(°C) 16.6 17.1 16.9 16.7 Itions, odor,	pH 5.91 5.32 5.13 5.06 5.19 color, s	Cond. (µS) 107.9 83.9 96.9 91.2	2.59 697 751 638	MO MO MO			
Gallons O 4.22 8.44 12.66 Before Sampling Comments (weat) 12/27/05: Ma	Time 9:00 9:10 9:20 9:27 12:20 ner cond ss Hy (1	Temp(°C) 16.6 16.8 17.1 16.9 Itions, odor, oudy, cool,	pH 5.91 5.32 5.13 5.06 5.19 , color, s	Cond. (µS) 107.9 83.9 96.9 91.2	2.59 697 751 638	MO MO MO			
Gallons O 4.22 8.44 12.66 Before Sampling Comments (weath	Time 9:00 9:10 9:20 9:27 12:20 ner cond ss Hy (1	Temp(°C) 16.6 16.8 17.1 16.9 Itions, odor, oudy, cool,	pH 5.91 5.32 5.13 5.06 5.19 , color, s	Cond. (µS) 107.9 83.9 96.9 91.2	2.59 697 751 638	MO MO MO			
Gallons O 4.22 8.44 12.66 Before Sampling Comments (weat) 12/27/05: Margin terms to	Time 9:00 9:10 9:20 9:27 12:20 ner cond ss Hy (1	Temp(°C) 16.6 16.8 17.1 16.9 Ido.7 Itions, odor, oudy, cool, oudy, cool,	pH 5.91 5.32 5.13 5.06 5.19 , color, s	Cond. (µS) 107.9 83.9 96.9 91.2 94.8 silt, etc.):	2.59 697 751 638	MO MO MO			
Gallons O 4.22 8.44 12.66 Before Sampling Comments (weat) 12/27/05: Ma	Time 9:00 9:10 9:20 9:27 12:20 ner cond sty cla	Temp(°C) 16.6 16.8 17.1 16.9 Itions, odor, oudy, cool,	pH 5.91 5.32 5.13 5.06 5.19 , color, s	Cond. (µS) 107.9 83.9 96.9 91.2	2.59 697 751 638	MO MO MO			

GROUNDY	VATER MONITORING WELL MAINTENAN	CE RECORD
FACILITY:	WAM . IN . II BEDMIT NO.	
LOCATION	M M ./ COMPANY.	12/27/05 Joyre Engineeting
2. Is t	urface water diverted away from the well head? the concrete pad still intact and free of cracks? as surface water runoff undercut the concrete pad?	NO Pad buried NO
	the outer casing still secure and locked? the well identification tag present and is it legible?	YES YES
Si	a. Does the well identification tag provide the followard. The well identification number?	VES
	 Drilling contractor name and registration no Total depth of well? 	NO YES
	 Depth to screen? A warning that the well is not for water su may contain hazardous materials? 	
6.	Is the grout between the inner and outer well casings	
7. 8.	Is the inner casing firmly grouted in place? Are the inner and outer casings upright and unobstruct	
9.	Is water collecting in the outer casing? Does a weep casing to provide drainage?	VES
10.	Is the monitoring well accessible by a four-wheel dr	Uve Aeurere:
11. 12.	Have brush and weeds been trimmed so that the we Does the inner well casing have a vented cap?	123
13.	Is the monitoring well visible and adequately prote	ected from moving equipment? orotected

DATE: 12/27/05

ENGINEERING, INC			GIVO	UIND WILL		
Project Name:	Material	Recovery, L	LC_Pr	oject No./Task	No.: 710.	05
Well ID:mw	- 2	Sampler(s): <u>J.</u> t	cerly/M.Osk	orne	
Well Location:_/	Portheas	+ side of	lands	11 in low are	α.	
We	ll Diamet	er:		2	inches	
Init	ial Depth	to Water (D	TW):	17.	2 feet	
Dep	oth to Bot	tom (DTB):		<u> 35.</u>	OO_feet	
Wa	ter Colun	nn Thickness	(WCT)	: <u>17.</u>	79_feet [D'	TB-DTW]
Calculation for O	ne Well	Volume (W	V):			
For	2" Well:	WCT	X 0.16	3 = 2.9	O gallons	
For	4" Well:	WCT	X 0.65	3 =	gallons	
For THREE Wel	l Volume	es: WV Z	X 3	= 8.	70 gallons	
Actual An	ount Pu	rged/Bailed	:	2.7	10 gallons	ŀ
Purged wi	th: <u><i>Dis</i></u>	posable Bai	ler			
Sampled v	•					
Depth to V	Water be	fore Sampli	ng :/	7.20 fee	t	
Gallons	Time	Temp(°C)	рН	Cond. (µS)	Turb.(ntu)	Initials
0	0941	17.3	5.05	273	14.1	99K
2,90	0947	17.0	5.01	325	44.8	99K
5.80	0952	16.9	5.03	328	45.2	99K
8.70	0959	16.9	5.04	325	21,4	99/
				·		
		1.00				
Before Sampling	0959	16.9	5.09	322	21.4	90/
Comments (weat	her cond	itions, odor,	, color, s	silt, etc.):		
Mostly cloudy Lo	w 40'S					
		, ,			· · · · · · · · · · · · · · · · · · ·	
Signature:	X	1		Date: <u>/</u> \	27-05	
QA/QC Sign Off	:	Gg-		Date: <u>/2</u> -	30-05	

GROUNDWATER MONITORING WELL MAINTENANCE RECORD)
--	---

FACILITY:	WA Material Recovery	uc permit no.	92-31
LOCATION	7: <u>MW-2</u>	DATE:	12-27-05
INSPECTO		COMPANY:	Joyce Engineering Inc
	urface water diverted away from		Yes Pad buried
	s surface water runoff undercut		No
•-	the outer casing still secure and		Yes
5. Is	the well identification tag present. Does the well identification	nt and is it legible?	
51	 Does the well identification 		Yes
	. Drilling contractor n	ame and registration nu	
	Total depth of well?		Yes
	. Depth to screen?		Yes ground water
	may contain hazard	ous materials?	pply and that the ground water
6.			II the way to the ground surface? Yes
7.	Is the inner casing firmly grout		
8.	Are the inner and outer casings		
9.	casing to provide drainage:		hole need to be bored in the outer
10.	Is the monitoring well accessi	ble by a four-wheel dri	Ae Aeurcie .
11.			l is easy to locate and access? Yes
12.	Does the inner well casing ha	a and adequately prote	cted from moving equipment?
13.	Is the monitoring well visible but no prot	edion.	

DATE: 12/27/05

Project Name: _r	Naterial	Accovery, L	<u>(C</u> Pr	oject No./Task	No.: 710.0	5				
Well ID:	V-3	Sampler((s): <u>5 k</u>	Terly/M. Ost	orne					
Well Location: Y	Portheart	- side of	lande	Ell past Mw	1-2					
We	ll Diame	ter:			inches					
Init	ial Depth	to Water (D	TW):	_26.	<u>90</u> feet					
Dep	oth to Bo	ttom (DTB):		_34.	50_feet					
Wa	ter Colur	nn Thickness	s (WCT)	: 7.6	feet [D]	ΓB-DTW]				
Calculation for O	ne Well	Volume (W	V):							
For	2" Well:	WCT	X 0.16	3 = 1.2	gallons					
For	4" Well:	WCT	X 0.65	3 =	gallons					
For THREE Well	l Volume	es: WV 2	X 3	= _3.	72 gallons					
Actual Am	For THREE Well Volumes: WV X 3 = $\frac{5.72}{\text{gallons}}$ gallons Actual Amount Purged/Bailed: $\frac{3.72}{\text{gallons}}$									
Purged with: Disposable Bailer										
Sampled v		· //	<i>I</i>							
Denth to V	Vater be	fore Sampli	ng: 20	6.88 fee	et					
_ op :										
Gallons	Time	Temp(°C)	pН	Cond. (µS)	Turb.(ntu)	Initials				
	1 .		T 1	WILL SHIP AND THE		Initials				
	Time	Temp(°C)	рН	WILL SHIP AND THE	Turb.(ntu)					
Gallons	Time 10.07	Temp(°C)	рН 4.55	WILL SHIP AND THE	Turb.(ntu) 3.68	mo mo				
Gallons O 1,24	Time 10:07	Temp(°C) 15.7 15.9	рН 4.55 4.37	WILL SHIP AND THE	Turb.(ntu) 3.68 +1000	mo mo				
Gallons 0 1.24 2.48	Time 10:07 10:10 10:13	Temp(°C) 15.7 15.9 15.6	рН 4.55 4.37 4.39	WILL SHIP AND THE	Turb.(ntu) 3.68 +1000 +1000	mo mo				
Gallons 0 1.24 2.48	Time 10:07 10:10 10:13	Temp(°C) 15.7 15.9 15.6	рН 4.55 4.37 4.39	WHEN THE PARTY	Turb.(ntu) 3.68 +1000 +1000 +1000	mo mo				
Gallons 0 1.24 2.48	Time 10:07 10:10 10:13	Temp(°C) 15.7 15.9 15.6	рН 4.55 4.37 4.39	WHEN THE PARTY	Turb.(ntu) 3.68 +1000 +1000	mo mo				
Gallons O 1.24 2.48 3.72	Time 10:07 10:10 10:13 10:16	Temp(°C) 15.7 15.9 15.6 15.8	pH 4.55 4.37 4.39 4.38 4.46	Cond. (µS) 609 813 766 759	Turb.(ntu) 3.68 +1000 +1000 +1000	mo mo mo				
Gallons O 1,24 2,48 3,72 Before Sampling Comments (weat)	Time 10:07 10:10 10:13 10:16 12:45 her cond	Temp(°C) 15.7 15.9 15.6 15.8 15.8	pH 4.55 4.37 4.39 4.38 4.46	Cond. (µS) 609 813 766 759	Turb.(ntu) 3.68 +1000 +1000 +1000	mo mo mo				
Gallons O 1,24 2.48 3.72 Before Sampling	Time 10:07 10:10 10:13 10:16 12:45 her cond	Temp(°C) 15.7 15.9 15.6 15.8 itions, odor,	pH 4.55 4.37 4.39 4.38 4.46 color, s	Cond. (µS) 609 813 766 759	Turb.(ntu) 3.68 +1000 +1000 +1000	mo mo mo				
Gallons O 1,24 2,48 3,72 Before Sampling Comments (weat) 12/27/05: Mos	Time 10:07 10:10 10:13 10:16 12:45 her cond	Temp(°C) 15.7 15.9 15.6 15.8 itions, odor,	pH 4.55 4.37 4.39 4.38 4.46 color, s	Cond. (µS) 609 813 766 759	Turb.(ntu) 3.68 +1000 +1000 +1000	mo mo mo				
Gallons O 1,24 2,48 3,72 Before Sampling Comments (weat) 12/27/05: Mos	Time 10:07 10:10 10:13 10:16 12:45 her cond	Temp(°C) 15.7 15.9 15.6 15.8 itions, odor,	pH 4.55 4.37 4.39 4.38 4.46 color, s	Cond. (µS) 609 813 766 759	Turb.(ntu) 3.68 +1000 +1000 +1000	mo mo mo				

CROTINDY	WATER 1	MONITORING WELL	MAINTENAN	CE RECORD
FACILITY	:.\. A	Material Recovery, LL		
LOCATIO		W-3	DATE:	12/27/05 Joyce Engineering
INSPECT(or: <u>M</u>	atthew Osborne	COMPANY:	Doyce Lightering
1. Is s	surface wat	ter diverted away from the	well head?	YES VES
2. Is 1	the concret	te pad still intact and free o	of cracks?	110
· ·	es surface	water runoff undercut the c	concrete pad?	NO .
4. Is	the outer of	easing still secure and lock	ed?	YES
	the well i	dentification tag present ar	nd is it legible?	YES
		es the well identification to		wing information:
		The well identification nu		· YES
		Drilling contractor name		mber? <u>registration</u> only
		Total depth of well?		YES
-	•	Depth to screen?		YES
	•	may contain hazardous	materials	ply and that the ground water
6.	Is the gro	ut between the inner and o	uter well casings al	I the way to the ground surface? YES
7.	Is the inn	er casing firmly grouted in	place?	
8.		nner and outer casings up		
9.	Is water casing to	collecting in the outer cas	ing? Does a weep b	nole need to be bored in the outer
10.	Is the m	nonitoring well accessible	by a four-wheel driv	ve vehicle? <u>VES</u>
11.	Have b	rush and weeds been trime	ned so that the well	is easy to locate and access? YES
12.	Does t	he inner well casing have a	vented cap?	YES
13.	Is the	monitoring well visible an	d adequately protect	ted from moving equipment? He but Not Protected
			V 1)(U	W. 001 1.01 1

DATE: 12-27-05

Well ID: MW-4 Sampler(s): J. Kely /M. Osborn										
Well ID:	1-4	Sampler	(s): <u> </u>	Kely /M. Osb	orn					
Well Location:										
	ll Diame			•	inches					
Init	ial Depth	to Water (D	TW):	_11.6	<u>&feet</u>					
Dej	pth to Bo	ttom (DTB):		27.	00 feet					
Wa	ter Colur	nn Thicknes	s (WCT)): <u>15.</u>	32_feet [D	TB-DTW]				
Calculation for O	ne Well	Volume (W	V):							
For	2" Well	: WCT	X 0.16	3 = 2.5	o gallons					
For	4" Well	: WCT	X 0.65	3 =	gallons					
For THREE Wel	l Volume	es: WV	X 3	= 7.5	O gallons					
Actual An	ount Pu	rged/Bailed	:	7.5	_					
Purged wi	th: <u>//</u> is	posable Ba	:/er							
Sampled v		**	•							
Depth to V	Vater be	fore Sampli	ng :	//. 70_fee	t					
Gallons	Time	Temp(°C)	pН	Cond. (µS)	Turb.(ntu)	Initials				
0	1053	16.9	5.23	138.9	57.0	99K				
250	1053	16,9 17,4	5.23 5.27	138.9 160.0	57.0 71000	99K 99K				
0 250 5.00										
	1058	17.4	5,27	160.D	71000	99/				
5.00	1058 1103	17.4 17.2	5.27 5.27	160.D 163.6	71000 71000	99/C 99/C				
5.00	1058 1103	17.4 17.2	5.27 5.27	160.D 163.6	71000 71000 557	99/ 99/ 99K				
5.00	1058 1103	17.4 17.2	5.27 5.27	160.D 163.6	71000 71000	99/C 99/C				
5.00 7.50	1058 1103 1106 1315	17.4 17.2 17.4	5.27 5.27 5.28 5.31	160.0 163.6 165.9	71000 71000 557	99/ 99/ 99K				
5.00 7.50 Before Sampling Comments (weath	1058 1103 1106 1315 her cond	17.4 17.2 17.4 17.0 itions, odor,	5.27 5.27 5.28 5.31	160.0 163.6 165.9	71000 71000 557	99/ 99/ 99K				
5.00 7.50 Before Sampling	1058 1103 1106 1315 her cond	17.4 17.2 17.4 17.0 itions, odor,	5.27 5.27 5.28 5.31	160.0 163.6 165.9	71000 71000 557	99/ 99/ 99K				
5.00 7.50 Before Sampling Comments (weath fastly Aprily 40	1058 1103 1106 1315 her cond	17.4 17.2 17.4 17.0 itions, odor,	5.27 5.27 5.28 5.31	160.0 163.6 165.9	71000 71000 557	99/ 99/ 99K				
5.00 7.50 Before Sampling Comments (weath fastly Aprily 40	1058 1103 1106 1315 her cond	17.4 17.2 17.4 17.0 itions, odor,	5.27 5.27 5.28 5.31	160.0 163.6 165.9 147.7 silt, etc.):	71000 71000 557	99/ 99/ 99K				

GROUNDWATER MONITORING WELL MAINTENANCE RECORD	<u>D</u>
--	----------

FACILITY:	WEA Material Recovery LLC	PERMIT NO.	92-31	
		DATE:	12-27-0	· · · · · · · · · · · · · · · · · · ·
LOCATION:	mw-4	DAIL.		
INSPECTOR:	J. Kedy	COMPANY:	Joyce Eng	invering Inc.
1. Is surfa	ce water diverted away from the	well head?	yes	<u> </u>
2. Is the c	concrete pad still intact and free of	cracks?	Yes	
	rface water runoff undercut the co		No	<u> </u>
4. Is the	outer casing still secure and locke	d?	Yes	·
5. Is the	well identification tag present and	l is it legible?	Yes	
5a.	Does the well identification tag		ing information:	•
•	. The well identification nur		· Yes·	
	Drilling contractor name a		iber? <u>Reg</u>	istration only
	Total depth of well?		res	
	. Depth to screen?		Yes	
	A warning that the well is may contain hazardous n	iateriaisi		
6. Is t	he grout between the inner and ou	ter well casings all	the way to the gr	ound surface? Yes
	the inner casing firmly grouted in		Yes	
8. Ar	e the inner and outer casings upri	ght and unobstructe	d?	Yes
9. Is	water collecting in the outer casir sing to provide drainage?	g? Does a weep ho	ole need to be bor	_
10. Is	the monitoring well accessible b	y a four-wheel drive	e vehicle?	<u>No</u>
11. F	Have brush and weeds been trimm	ed so that the well i	s easy to locate a	nd access? Tes
12. I	Does the inner well casing have a	vented cap?	<u>res</u>	
13.	Is the monitoring well visible and Visible but not prof	adequately protected	ed from moving e	quipment?

DATE: 12/27/05

Project Name: Material Recovery, LLC Project No./Task No.: 7/0.05						
Well ID: Mw-5 Sampler(s): Trendy/M. Ostorne						
Well Location:/	Back co	rner of la	nd F.11 0	east sed po	and	
	ll Diame		,		•	
Init	ial Depth	to Water (D	TW):	10.	<u>00</u> _feet	
Dej	pth to Bo	ttom (DTB):		24	.00 feet	
Wa	ter Colur	nn Thickness	s (WCT)	: 14.	feet [D]	TB-DTW]
Calculation for C	ne Well	Volume (W	V):	•		
For	2" Well:	WCT	X 0.163	3 = 2, 2	28gallons	
For	4" Well:	WCT	X 0.653	3 =	gallons	
For THREE Wel	l Volume	es: WV	X 3	= 6.8	gallons gallons	
Actual An	nount Pu	rged/Bailed	•	6.9	34gallons	·
Purged wi	ith: <u>D</u> i	sposable B	Pailer			
Sampled v	vith:	it	11			
Depth to V	Water be	fore Sampli	ng :/C). <u>04</u> fee	et	
C 11	mr:	TD (0.00)		C1 (ug)		
Gallons	Time	Temp(°C)	pН	Cond. (µS)	Turb.(ntu)	Initials
Gallons	11.20	15.1	PH 5.77	81.7	162	Initials M
2,28			 	- 1		
0	11:20	15.1	5.77	81.7	162	m
0 2,28	:20 :25	15.1 14.9	5.77 5.82	81.7 83.5	162	mo mo
0 2,28 4.56	:20 :25 :30	15.1 14.9 15.0	5.77 5.82 5.80	81.7 83.5 82.4	162 +1000 +1000	mo mo
0 2,28 4.56	:20 :25 :30 :35	15.1 14.9 15.0	5.77 5.82 5.80	81.7 83.5 82.4	162 +1000 +1000	mo mo mo
0 2,28 4.56	:20 :25 :30	15.1 14.9 15.0	5.77 5.82 5.80	81.7 83.5 82.4	162 +1000 +1000	mo mo
0 2,28 4.56 6.84	:20 :25 :30 :35 3:35	15.1 14.9 15.0 14.8	5.77 5.82 5.80 5.88 5.88	81.7 83.5 82.4 82.6	162 +1000 +1000 +1000	mo mo mo
2.28 4.56 6.84 Before Sampling	:20 :25 :30 :35 3:35	15.1 14.9 15.0 14.8 14.6 itions, odor,	5.77 5.82 5.80 5.88 5.83	81.7 83.5 82.4 82.6	162 +1000 +1000 +1000	mo mo mo
2.28 4.56 6.84 Before Sampling	11:20 11:25 11:30 11:35 13:35 her cond	15.1 14.9 15.0 14.8 14.6 itions, odor,	5.77 5.82 5.80 5.88 5.83	81.7 83.5 82.4 82.6	162 +1000 +1000 +1000	mo mo mo
2.28 4.56 6.84 Before Sampling Comments (weat 12/27/05: Mo. Parameters taken Field Blank @	11:20 11:25 11:30 11:35 13:35 her cond stly clo	15.1 14.9 15.0 14.8 14.6 itions, odor,	5.77 5.82 5.80 5.88 5.83	81.7 83.5 82.4 82.6	162 +1000 +1000 +1000	mo mo mo
2.28 4.56 6.84 Before Sampling Comments (weat 12/27/05: Mo	11:20 11:25 11:30 11:35 13:35 her cond stly clo	15.1 14.9 15.0 14.8 14.6 itions, odor,	5.77 5.82 5.80 5.88 5.83	81.7 83.5 82.4 82.6	162 +1000 +1000 +1000	mo mo mo

CROTINITY	WATER MONITORING WELL	MAINTENAN	CE RECORD
FACILITY	WEA	PERMIT NO.	92-31
LOCATIO	N: <u>MW-5</u>	DATE:	12/27/05 Eniversity
INSPECTO	or: Matthew Osborne	COMPANY:	Joyce Engineering
1. Is s	surface water diverted away from the	well head?	YES
	the concrete pad still intact and free o		YES
-	as surface water runoff undercut the c		<u>NO</u>
	the outer casing still secure and locke	ed?	YES
•-	the well identification tag present an		在5
	a. Does the well identification ta	g provide the follow	ving information:
	. The well identification nu		<u>1t></u>
	. Drilling contractor name	and registration nur	mber? <u>registration</u> only
	Total depth of well?		YES
	. Depth to screen?		
	may contain hazardous i	naterials	ply and that the ground water
6.	Is the grout between the inner and o	uter well casings al	I the way to the ground surface? $\bigvee ES$
7.	Is the inner casing firmly grouted in		
8.	Are the inner and outer casings upr		
9.	Is water collecting in the outer casi casing to provide drainage?		VES
10.	Is the monitoring well accessible b	y a four-wheel driv	re vehicle?
11.			is easy to locate and access? YES
12.	Does the inner well casing have a	vented cap?	(
13.	Is the monitoring well visible and	l adequately protect	ted from moving equipment?
	V	risible but not	r protected

DATE: 12/27/05

SURFACE WATER MONITORING LOG

Project Name: Material Pecovery, LLC	Project/Task No.: 7/0.05
Surface Point ID: <u>Sw-1</u> Sampler(s):	5 kerly/M.Osborne
Location: Upstream of P-15 \$	P-ID northwest property boundary
Field Parameters:	, , , , , , , , , , , , , , , , , , , ,
Time of Sampling:	11:55
pH:	6.20
Temperature:	9.7 (°C)
Conductivity:	<u>150</u> (μS)
Turbidity:	0.4 (ntu)
Comments/Sample Description(weather	
12/27/05: Mostley Cloudy, Cool,	40'3
	· · · · · · · · · · · · · · · · · · ·
Sketch of Sample Location (include	flow direction, drainage pathways, etc.):
•	
w sw-1	
	⊠ ⊠ IS ID
	13 10
Signature:	Date: 12/27/05
QA/QC Sign Off:	Date: 12-30-05
/ ° °	

DATE: 12-27-05

SURFACE WATER MONITORING LOG

Project Name: Material Recovery, LL	Project/Ta	sk No.: 710.05
Surface Point ID: <u>SW- 2</u> Sampler(s):_	J. Kedy Im. Osborn	e
Location: Between mw-3 & mw	,	
Field Parameters:	`	
Time of Sampling:	1305	<u>.</u>
pH:	6.21	
Temperature:	8.7	(°C)
Conductivity:	124.3	(μS)
Turbidity:	9,43	(ntu)
Comments/Sample Description(weather c	onditions, odor, color,	silt, etc.):
Sunny, 50'S, slight breeze		
		- Anna Caracteristic - Anna Ca
Sketch of Sample Location (include t	low direction, drainage	nathways. etc.):
(
Sed. Pond	Sw-	3
	7W-4 ▼ mw-3	
Signature: 2	Date: /2-27	7-05
QA/QC Sign Off:	Date: 12-30	

DATE: 12/27/05

SURFACE WATER MONITORING LOG

Project Name: Material Recovery, L	LLC Project/Task No.: 7	10.05
Surface Point ID: <u>SW-3</u> Sampler(s)): J. Kerly/M. Osborne	
Location: Stream past MW-2	ζ	
Field Parameters:		
Time of Sampling:	10.00	
pH:	6.10	
Temperature:	8.7 (°C)
Conductivity:	<u> 361 (µs</u>)
Turbidity:	(ntt	1)
Comments/Sample Description(weather		
12/27/05: Mostly Cloudy, Cool	, 40 ¹ 5	
	· ·	
Sketch of Sample Location (include	de flow direction, drainage pathways, e	etc.):
, and a second		,,.
Road	12 mw-3	
Road		
		•
· .	₩ sw-3	
, the state of the	1 / 2111/00/2/	
Si Matthe (1)	n, 17/27/20	
Signature: //allter Some	Date: 12/27/05	
QA/QC Sign Off:	Date: 12-30-05	